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Abstract: The results of kinetic studies involving an enzyme and two substances competing for the same enzymatic 
site may be very different when the roles of these substances as substrate and inhibitor are reversed. If the substance 
used as an inhibitor has a much larger affinity for the enzyme than the substrate, then a plot of inverse reaction 
velocity of substrate vs. inverse initial substrate concentration for different values of initial inhibitor concentration 
will not have, under regular experimental conditions, the usual Michaelis-Menten form. The results to be expected 
depend essentially on the time of observation as measured from the start of the reaction. The deviations from the 
Michaelis-Menten form should be significant in experiments of the type carried out recently by Miller and Balis 
in their investigation of the enzyme Escherichia coli L-asparagine amidohydrolase reacting with the substrates 
asparagine and glutamine. Other experiments which are expected to require the time-dependent theory for their 
understanding are indicated. 

The results of experiments on simple enzyme acti
vated reactions are usually described and analyzed 

in terms of the Michaelis-Menten theory.l This de
scription predicts a simple linear relationship between 
the reciprocal reaction velocity and the reciprocal 
initial substrate concentration S0

- '.2 The approximate 
nature of this description is well known; nevertheless 
it is widely successful in its applications. 

The theory was developed initially for a reaction 
involving an enzyme and a substrate with which it 
reacts. If there are two substrates present which com
pete for the same enzymatic site, the reaction is said 
to be "fully competitive."3 In such a reaction, the 
substrate that is singled out for measurement of its 
reaction velocity is referred to as the "substrate." The 
second substrate is called the "inhibitor." Obviously, 
the roles of inhibitor and substrate may be interchanged 
in a second study. 

For such a fully competitive reaction, Michaelis-
Menten theory still predicts a linear relation between 
the reciprocal reaction velocity of the substrate (f s)_1 

and s<rK As presented by Briggs and Haldane,4 this 
relationship takes the form 

L = J_|~i + *M_Yl + —X] (1) 

Here Vmax
s is the maximum value of the reaction veloc

ity vs, KM is the Michaelis constant, /0 is the initial in
hibitor concentration, and the superscripts s and i 
denote substrate and inhibitor, respectively. The con
stants KM and Kmax depend on various reaction rate 
constants and the initial enzyme concentration. When 
a Lineweaver-Burk plot2 is made of eq 1 for different 
values of i0, the result is a family of straight lines with 
the common intercept 1/Kmax

s on the ordinate axis 
so"1 = 0. 

Recently, Miller and Balis5 investigated the activ-

(1) L. Michaelis and M. L. Menten, Biochem. Z., 49, 333 (1913). 
(2) H. Lineweaver and D. Burk, / . Amer. Chem. Soc, 56, 658 (1934). 
(3) M. Dixon and E. C. Webb, "Enzymes," Academic Press, Inc., 

New York, N. Y„ 1964. 
(4) G. E. Briggs and J. B. S. Haldane, Biochem. J., 19, 338 (1925). 
(5) H. K. Miller and M. E. Balis, Biochem. Pharmacol., 18, 2225 

(1969). 

ities of the enzyme E. coli L-asparagine amidohydrolase 
reacting with the substrates asparagine and glutamine, 
separately and together. When they utilized asparagine 
as a substrate in the presence of several concentrations 
of glutamine, they found that the results of this experi
ment were in agreement with Michaelis-Menten theory 
as expressed by eq 1. However, in a second experiment 
in which glutamine was utilized as a substrate in the 
presence of several concentrations of asparagine, the 
results could not be represented by means of eq 1. If 
asparagine were absent (i0 = 0), the results did agree 
with eq 1. These authors noted that the maximum 
reaction velocity for asparagine Kmax was greater than 
the maximum reaction velocity for glutamine by a 
factor of about 15. They therefore suggested that the 
qualitative basis for the paradoxical difference in the 
two experiments is that in the second experiment the 
inhibitor substance asparagine disappears rapidly dur
ing the course of the experiment. It was the suggestion 
of Balis that we investigate theoretically the appropriate 
modification of eq 1 for such circumstances that moti
vated the present work. 

Time-Dependent Michaelis-Menten Theory 

Let S and I denote substrate and inhibitor substances, 
respectively, which react with an enzyme E at the same 
enzymatic site. It is assumed that substrate and enzyme 
react to form an enzyme-substrate complex Ci, which 
can in turn dissociate to form either the enzyme and 
substrate, or the enzyme and some products Pi. Sim
ilarly, the inhibitor and enzyme react to form an in
hibitor-enzyme complex C2, which dissociates to form 
either the enzyme and inhibitor or the enzyme and some 
products P2. The reverse reactions of products and 
enzyme to form complexes is assumed to be negligible. 
These reactions are represented schematically as follows. 

k+i k+s 
S + E ^ = i C1 —=•• E + Pi 

i t - 1 

k+2 &+ 4 
I + E ^ : Q — > • E + P2 

k-i 

As is well known, the differential equations of the system 
present a mathematical problem in singular perturba-
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tion theory.6 These equations may be solved in a 
formal way by means of an asymptotic expansion in the 
small parameter e0/s0, where e0 is the enzyme concentra
tion. (Fortunately, this parameter is always made 
small in practical investigations of enzyme reactions. 
For example, in the Miller-Balis experiments previously 
cited, if we assume that the molecular weight of the 
enzyme is ~ 150,000, then eo/s0 ~ 10-6.) The first 
term of this expansion, whose derivation is found in the 
Appendix, is the solution to zero order in e0/so- This 
solution yields the following expressions for the sub
strate concentrations s(t) and the inhibitor concentra
tion /(O as functions of the time /. 

st = S 0 s(o + Tm" :,{>-[ f]V 
*-M *ffl 

and 

where 

and 

/(O = I0 
"SCO/ 
. So . 

5 = ^ m a x ' ^ l M 

KMS — 
/C_! + fc+3 

k+i 

Vmzx = ^+seo " DIBT 

/c_2 + k+i 

k+i 

•• fc+4Co 

(2) 

(3) 

(4) 

(5) 

Differentiating eq 2 and 3 yields 

1 
v\t) 

ds(t) 
dt 

1 
1 + ^(l + MX\ (6) s(t) \ ^ Ku1Jj K ' 

J_ 
v\t) 

di(t) 
dt 

Kt) 
SKt)v%t) 

(7) 

The assumptions underlying this approximate solu
tion are essentially equivalent to the hypothesis that 
the system is in a pseudosteady state.4 The pseudo-
steady-state hypothesis may be understood physically 
as follows. Imagine an experiment in which a constant 
supply of substrate and inhibitor is provided at rates 
J3 and JJ, respectively, and the reaction products Pi 
and P2 are continuously removed. Then a steady state 
will be established with the values s and I for the sub
strate and inhibitor concentrations, respectively, given 
by the expressions 

s = 1 - Ji 

V l 

' max . 
SJi 

6JS 

(8) 

(9) 

These expressions are identical with eq 6 and 7 providing 
v%t), 1/(0, s(0, and /(O there are replaced by Js, Ji, s, 
and I, respectively. Therefore, we may characterize 
the pseudosteady-state hypothesis as the assumption 
that, at any instant of time, the relations between the 
concentrations and the reaction velocities are the same 

(6) F. G. Heineken, H. M. Tsuchiya, and R. Aris, Math. Biosci., 1, 
95 (1967). 

as those that would obtain in the steady-state experi
mental arrangement envisaged above. It is interesting 
to note from eq 8 that a steady state is possible only if 
the quantity 

\V 5 V 1J 
\ r max r max / 

< i 

It is easy to show that the time interval necessary for 
the pseudosteady state to be established is of the order 
of [A:+i(s0 + ^ M 8 ) ] " 1 and [k+2(i0 + KM

[)]-1 for substrate 
and inhibitor, respectively (see Appendix). For most 
enzyme-substrate reactions this interval is on the order 
of a fraction of a second. The times at which vs are 
usually measured are on the order of minutes, so that 
the requirements of the theory are readily satisfied in 
the foregoing respect. 

Under usual experimental conditions, the times of 
measurement are such that s(0 « S0. If, in addition, 
J-(O *** i«, then eq 6 yields essentially the same result as 
eq 1. However, as can be seen from (3), s(t) « S0 does 
not assure that /(O « Jo when 8 is large. In such a case, 
the full time dependence of eq 2 and 3 is necessary for 
interpreting the experiments. 

In order to compare eq 2 and 3 with experiment in 
the general case, we note that in practice velocities are 
often measured by observing s(t) for small times and 
assuming that a linear expansion of s(t) about the origin 
is valid. In mathematical terms, a common experi
mental definition of the reaction velocity is 

no = 
S0 - s(0 (10) 

With this definition and eq 2 and 3 for s(t) and /(0, 
an expression for [£s(0]-1 which generalizes eq 1 is 
readily found. The result is 

1 1 

SS(0 ^maxl S0 

X 

/o - Kt)Ir1 

'max * J 

where 

a(0 = 
So 

s(0 — .So 
In 

. ^o . 
1 

(H) 

(12) 

Equation 11 is simplified if we assume, as is usually the 
case, that the fractional disappearance of s(0 is small 
during the course of the experiment, [s0 — s(t)]/s0 <5C 1. 
If the logarithm term in eq 12 is expanded in powers of 
[S0 — s(0]/so, then it follows that «(0 is of the order of 
the fractional disappearance of s(0, and is small com
pared to unity. Therefore it may sensibly be neglected 
in eq 11 for comparison with the results of typical ex
periments. 

Equation 11 together with eq 3 and 12 constitute 
a convenient time-dependent generalization of 
Michaelis-Menten theory. Equation 11 reduces to 
eq 1 in the limit t -*• 0. If measurements of v\t) are 
to be made minutes after the start of the reaction, it is 
necessary to consider whether the time-dependent 
formalism is needed or not. The decision hinges on the 
value of 5 that appears in eq 3. Thus, if 5 < 1, then 
during the course of an experiment in which s(0 stays 
close to S0, /(O will not differ very greatly from /0, so 
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Figure 1. The fractional amounts of substrate s{t)lso and inhibitor 
Kt)Ik are shown as functions of the time. The curves are based on 
eq 2 and 3. The parameter values are those of the Miller-Balis 
experiments: substrate = glutamine, inhibitor = asparagine, 
Kmax" = 0.80 X 10-" mol/(l. min IU), Ku" = 1.3 X 10"2 

mol/1., V^j = 1.3 X 10"3 mol/(l. min IU), KM
{ = 1.3 X 10~3 

mol/1., 6 = 160,10 = 5 X lO"3 mol/1., S0 = 0.02, 0.01, and 0.00667 
mol/1. 

that the expression [Z0 — Kt)]Jt, which appears in the 
last bracket of eq 11, is approximately equal to di(t)/dt 
at t = 0. In such a case, the use of eq 11 is hardly 
different from the use of eq 1. However, if 5 is suf
ficiently large, then it is necessary to utilize eq 11 or eq 6, 
depending on the method of measuring reaction veloc
ity. There are two simplifications in eq 11 that may be 
made under appropriate conditions. One is the neglect 
of t{i) as discussed above. The other results when the 
time of measurement is sufficiently large so that /(/) is 
negligible compared with z0. Then eq 11 assumes the 
following simple form (assuming «(/) is also negligible). 

i 
i + KM* 

So 
1 -

V H 
r max *_ 

(13) 

Equation 13 predicts that Lineweaver-Burk plots of 
[S8O)]-' vs. s<r1 for different values of /0, with all mea
surements made at a fixed time t relative to the onset 
of the reaction, will yield a family of straight lines with 
a common intercept at the point [Ss0)]_1 = 0, s<rl = 
—(KMS)~1- This family includes the straight line of the 
ordinary Michaelis-Menten theory for the enzyme-
substrate system with inhibitor absent. We emphasize 
that for this equation to be applicable, t must be suf
ficiently large so that i(t) « /0, but not so large as to 

violate the requirement [s0 — s(t)]/so « 1 . In other 
words, it is applicable when most of the inhibitor but 
very little of the substrate has disappeared. 

Discussion 

Miller and Balis5 found that when asparagine was 
used as a substrate for the enzyme E.coli L-asparagine 
amidohydrolase, the values of the Michaelis-Menten 
parameters were KM

A = 1.3 X 10 -3 mol/1., Vmax
A = 

1.3 X 10-3 mol I.-1 min-VIU of enzyme. When 
glutamine was used as a substrate, the values obtained 
for these parameters were ^ M

G = 1.3 X 10~2 mol/1., 
F m s

G = 0.80 X 10-4 mol I.-1 min-VIU of enzyme. 
These values of the Michaelis-Menten parameters 
determine the value of S as Vieo if asparagine is used as a 
substrate and glutamine is used as an inhibitor. In this 
case, we expect ordinary Michaelis-Menten theory to 
be applicable, and this is indeed what Miller and Balis 
found. In the reverse situation in which glutamine is 
used as a substrate and asparagine is used as an inhibi
tor, the value of 8 is 160. In such a case, we expect 
ordinary Michaelis-Menten theory not to apply. 
Rather, it is necessary to apply the time-dependent 
theory. Figures 1 and 2 are based on eq 2, 3, and 11 
for this case, namely, S = 160. 

In Figure 1 we have plotted the functions s(t)/s0 and 
i(t)/io for the parameter values of the Miller-Balis ex
periments with glutamine as substrate and asparagine as 
inhibitor. The rapid decrease with time of the in
hibitor substance is readily apparent in this figure, even 
though the fractional decrease of substrate remains 
small. 

In Figure 2 are shown several Lineweaver-Burk 
plots based on eq 11 for the same experimental values 
as in Figure 1 and several values of the time of measure
ment. The value of /0 was chosen to be 5 X 10~3 

mol/1. as in one of the Miller-Balis experiments. The 
great sensitivity of the curve to the time of measurement 
is noteworthy. Also shown as dotted lines are two 
curves based on the simplified eq 13 with / = 10 and 
20 min. These dotted curves are not very different 
from the curves that would be obtained using eq 11, 
except for small values of So~\ At these large initial 
values of substrate concentration, all the curves based 
on eq 11 converge to a common intercept, not unex
pectedly. For a given value of enzyme concentration 
<?o, the larger the initial value of substrate concentra
tion, the longer it takes for a given fraction of substrate 
concentration or inhibitor concentration to disappear, 
and the more eq 11 resembles its zero-time limit, eq 1. 

In Figure 3 is shown the fractional amount of in
hibitor concentration /(0/'o as a function of the frac
tional disappearance of substrate (1 — s(t)/s0) at time t, 
for various values of S. The curves show clearly how 
the disappearance of i(t)/i0 increases rapidly with 8 for 
a given amount of substrate disappearance. 

The mathematical explanation of the Miller-Balis 
phenomenon indicates that a similar breakdown in the 
applicability of ordinary Michaelis-Menten theory will 
occur in the usual investigation of the kinetics of 
enzyme-substrate-inhibitor systems of a fully competi
tive type whenever the parameter S is large compared 
to unity. Thus, the enzyme xanthine oxidase oxidizes 
the antimetabolito-6-mercaptopurine to produce 6-thio-
uric acid. It was found7 that the parametric values of 
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Figure 2. The reciprocal mean reaction velocity [HO]'1 is shown 
as a function of the reciprocal initial substrate concentration ^0

-! for 
different values of the time. The solid curves are based on eq 11 for 
the same experimental values of the parameters as those quoted for 
Figure 1. The dashed curves are based on the approximate form of 
eq 11 (eq 13), for / = 10,20 min. This form is valid for; sufficiently 
large so that;'(?) « /0, while Oo — sMl/so « 1. 

this reaction are KM = 17.5 X 10"6 M and Kmax = 0.083 
jumol hr-1/0-4 unit enzyme. For the catalytic oxida
tion of xanthine to uric acid by xanthine oxidase, the 
parametric values of the reaction are Ku = 5.4 X 
1O-6 M, and Kmax = 9.40 ^mol hr-1/0.4 unit of enzyme. 
The competitive inhibition of xanthine oxidation by 
6-mercaptopurine in the presence of xanthine oxidase 
was observed to obey ordinary Michaelis-Menten 
theory for reactions of a fully competitive type.7 We 
readily calculate 5 = 0.0027 for this reaction, so that 
the agreement with ordinary theory is expected. At 
the same time, we note that in the reverse situation in 
which xanthine inhibits the oxidation of 6-mercapto
purine, 8 = 370. Such an experiment has not been 
performed to the best of our knowledge. When it is, 
we predict that ordinary Michaelis-Menten theory will 
not be applicable and that the time-dependent formalism 

(7) H. R. Silberman and J. B. Wyngaarden, Biochim. Biophys. Acta, 
47, 178 (1961). 

Figure 3. The fractional amount of inhibitor concentration KOlio is 
shown as a function of the fractional disappearance of substrate 
concentration (1 — s(0/so) at a given time, for different values of 5. 
The figures are based on eq 3. 

will be applicable. With regard to the observations, 
it is recommended that the time at which observations 
are made be carefully recorded. Other substrates of 
xanthine oxidase, such as 2,6-diaminopurine, are "slow" 
when compared with xanthine,8 so that utilizing xan
thine as an inhibitor with them would also result in a 
large value for 8. 

Another example of a fully competitive reaction in 
which 8 is rather small is the catalysis by the enzyme 
adenosine deaminase of the dechlorination of 6-chloro-
purine ribonucleoside to yield inosine and chloride ions, 
in the presence of adenosine as inhibitor. The reaction 
parameters for adenosine diaminase with adenosine as 
substrate are Fmax = 400 ̂ urnol min~'/mg of enzyme, KM 

— 8.3 X 1O-5M; with 6-chloropurine ribonucleoside as 
substrate, Kmax = 100/umol min~7mg of enzyme, A"M = 
6.4 X 10~4 M. With adenosine as a substrate and 
6-chloropurine ribonucleoside as inhibitor, 5 = 0.032, 
so that the time-independent theory should apply as is 
observed.9 The reverse situation in which 6-chloro
purine ribonucleoside is utilized in the presence of 
adenosine diaminase with adenosine as an inhibitor 
has a value of 5 = 31 associated with it. This value is 
not as large as in the previously cited example, although 
we would still expect some deviations from the classical 
theory if the experiment is performed. 

Conclusions 

When two substances react with an enzyme in a 
fully competitive manner, the theoretical expressions 
for the temporal disappearance of each of them assume 
a symmetric form. In kinetic studies of such a system, 
the substance whose reaction velocity is measured is 
called the substrate and the other substance is called 
the inhibitor. Thus, there is a dual choice as to which 
substance plays the role of substrate and which sub
stance plays the role of inhibitor. The parameter 5 
is a measure of the relative "fastness" or "slowness" 
of the two substances. When 8 is less than unity, the 
"slow" substance is being utilized as inhibitor. When S 
is greater than unity, the "fast" substance is being uti
lized as inhibitor. If S is less than or comparable with 
unity, then ordinary Michaelis-Menten theory may be 

(8) J. B. Wyngaarden, /. Biol. Chem., 224, 453 (1957). 
(9) J. G. Cory and R. J. Suhadolnik, Biochemistry 4, 1733 (1965). 
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expected to be sufficient to understand the kinetic 
aspects of the study. If 5 is large compared to unity, 
then the time-dependent theory presented herein is 
needed for a proper interpretation of the results. 
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Appendix. Zero-Order Solution of the Kinetic 
Equations 

Let e, s, i, C1, and c2 represent the concentrations of 
the quantities enzyme, substrate, inhibitor, substrate-
enzyme complex, and inhibitor-enzyme complex, re
spectively, at any time. Let the subscript zero attached 
to a symbol denote its value at the initial time t = 0. 
Introduce the following dimensionless variables and 
parameters. 

t' = kie0t s' = s/so i' = i/i0 

C1' = Ci/eo C2' = C2Je0 a = e0/so 

P = io/so y = k+2jk+1 (1) 

K1 = (fc_! + k+3)/k+1s0 K2 = (k-2 + k+i)lk+2io 

U1 = k+3/k+1s0 U2 = k+i/k+2io 

If we now drop the primes, the kinetic equations assume 
the following form. 

ds(t) 
dt 

= —s + (s + Ki— U1)C1 + sc2 

(Jc1(O 
* dt 

s — (s + K1)C1 — sc2 

(2) 

(3) 

di(0 
dt 

= y[-i + (i +K2- U2)C2 + Zc1] (4) 

dc2(t) a r . (i + K2)C2 - JC1] (5) 

These equations are to be solved subject to the initial 
conditions 

(6) 
s(0) = /(0) = 1 

C1(O) = C2(O) = 0 

The enzyme concentration e satisfies the relation 

C1 + c2 + e = 1 (7) 

Equations 2-5 are nonlinear and not susceptible to 
solution in closed form. We shall assume that a is 
very small compared to unity. This condition is satis
fied in the usual experimental situation. In addition we 
assume that the parameters /3 and y are 0(1). This 
suggests that a solution to eq 2-5 be sought by means of 
an expansion in a. However, the small parameter a 
multiplies the highest derivative term in two of the 
equations and therefore the problem presented is classi
fied in the theory of singular perturbations. According 
to this theory, the solution to eq 2-5 in terms of an ex
pansion in a is asymptotic; i.e., it tends to the true solu
tion as a -*• 0, although the series solution probably 

diverges. The solution we shall present parallels the 
asymptotic solution presented in ref 6 for an enzyme-
substrate system. The reader is referred there for a 
fuller discussion of the solution and the method for 
obtaining it. 

We proceed formally by seeking a solution to eq 
2-5 as a power series in a, e.g. 

(s,i,Cl,c2) = Z ( j t ' i i W c i ' V y (8) 
n = 0 

If we substitute (8) into (2)-(5) and equate to zero the co
efficients of like powers in a, we find that the terms 
which are zero order in a satisfy the equations 

ds<°> 
~dT 

dt<°> 
dt 

= -s^ + (*«» + K1- U1)C1W + j.(o)c,(o) (9) 

= Y [ - ! « » + (i«» + JT2 - U2)C2^ + ;-(o)Cl(o)] (!0) 

0 = 5<°> - (s<0) + .Ki)C1"" - S^c2W ( H ) 

0 = i'(o) - (/(o) + AT2)C2W _ /(0)Cl(o) ( 1 2 ) 

Equations 11 and 12 are algebraic equations which are 
readily solved for Ci(0) and c2

(0). The resulting expres
sions may be substituted into eq 8 and 9. The latter 
are then also readily solvable. The result is 

C1(O)(Z) = 

c2(o»(0 = 

K2sW(t) 

AV (0 )(0 + *2*<o>(0 + K1K2 

K1JW(I) 
K1IW(I) + K2sW(t) + K1K2 

(13) 

(14) 

* ( 0 ) (0 + 77 [SW(DfV^ZmK, + Ki l n 5 (0 ) W + 
U2 

C = -Uit (15) 

r'<0)(0 = [sw(i)]yU*Ki/UiKi (i6) 

where C is a constant to be determined. We do not 
impose on the solution the requirement that it satisfy 
the initial conditions because the assumed expansion is 
not valid in the neighborhood of t = 0. In fact, it can 
be seen that C1^(O and c2

t0)(O cannot satisfy the 
initial conditions. Rather, we recognize that the ex
pansion (8) constitutes an "outer" expansion, valid 
only for t "sufficiently large." We must find another 
expansion, the " inner" expansion, which is valid for t 
small. 

To this end we introduce the new time scale r and 
new variables defined by 

T = t/a S(T) = s(ar,a) I(T) = i(ar,a) 

C1(T) = C1(CtT^) C2(T) = c2(aT,a) 

In terms of these variables, eq 2-5 become 

d S 

(17) 

. = a[-S + (S + K1 - U1)C1 + SC2] (18) 
dr 

~ = ay[-I +(1+K2- U2)C2 + IC1] (19) 
dr 

^ = S - (S + K1)C1 - SC2 (20) 
dr 

^ 2 = /37[/ - (/ + K2)C2 - IC1] (21) 
dr 

Journal of the American Chemical Society / 92:13 / July 1, 1970 



3893 

As before, we assume a solution to these equations of 
the form 

( 5 , / , C C 2 ) = i2(SWJ™,C1™,CaW)an (22) 
K = O 

Substituting eq 22 into (18)-(21) and equating coeffi
cients of a", we obtain 

dS<°> 
dr 

d/<°> 
dr 

= 0 

= 0 

(23) 

(24) 

dcy°> 
dr 

dC2<°> 
dr 

= 5<°> - (S«» + JSTI)CI"" - S™C,«» (25) 

= /3Y[/<°> - (l«» + AT2)C2(̂  - /«»Ci<0>] (26) 

The solution to these equations which does satisfy the 
initial conditions is 

Ci<« = 

C2
(0' = 

S<o) = i 

/(0) = l 

K2 

K1 + K2 + .Ki-K2 

(27) 

(28) 

^ e x + r - Bex-T (29) 

-Ki + Ki + KiAT2 

+ (1 + K1 + \+)A<?»r + 

where 

A= -[[1 + K1- /S7(I + K2)I2 + 

4/37] - V i 1 + 
K2X-

K1 + AT2 + KiK2 

5 = [{1 + K 1 - 07(1 + K2)}2 + 

P T J L K1 + AT2 + KiK2. 

(31) 

(32) 

X± = 7,{1 + Ki + /37(1 + -K2)± 

[{1 + Ki - 07(1 + K2)12 + 407]'/=} (33) 

It may be observed parenthetically that if fiy « 1, 
X+ « - ( I + K1) and X_ « - / S r ( I + K2). The inner 
expansion and the outer expansion must be asymp
totically equal in their common domain of validity. We 
assume that there is such a common domain for some 
intermediate values of t. Therefore, if the inner expan
sion is expanded for large values of T and the outer ex
pansion is expanded for small values of /, the resulting 
expansions must be asymptotically equal. Upon doing 
this, we find that the constant C in eq 15 is determined as 

•1 - U1IyU2 (34) 

The complete asymptotic solution to a given order in a 
may be constructed from the inner and outer solutions 
(see ref 6 for details). We denote this solution to zero 

(0) The result is 

S(0>(0 

order in a by s (0), ?(0), Ci(0), C2 

s<°>(0 = 

U1I + 1 + U1JyUi - ( I / 1 /7 t /Ot*C 0 ) ( ' ) r t" J C l / t ' l J t 2 -

Kilns<°>(0 (35) 

I<°>(0 = ;'<0)(0 = [s<o>(()]Tir.ic./£/iK. (36) 

K2s<°>(0 
Ci(O)(O = 

tf,i«»(0 + K2s<°'(0 + K1Ki 

Ae^t/a - Bex-t/a (37) 

(1 + Ki + X_)5ex-T (30) £*(0>(0 = 
Ki/(°>(0 

+ Ki/(»>(0 + K25C>(0 + K1Ki 

(1 + Ki + \+)Aex*l/a + (1 + K1 + X_)5ex- , / a (38) 

where A , B, and X± are given by eq 31-33. If the 
expressions for 5(0>(0 and i ( 0 )(0 above are expressed 
in terms of dimensional variables by the use of (1), 
they become eq 2 and 3, respectively, of the text. 

By comparing (37) and (38) with (13) and (14), re
spectively, we see that the time needed for the pseudo-
steady state to be established is just the time necessary 
for the exponential terms in (37) and (38) to be neg
ligible compared with the nonexponential terms. 
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